TeXipedia

weierp

Represents the Weierstrass elliptic function, commonly used in complex analysis and number theory.

Overview

A fundamental mathematical function that plays a key role in the study of elliptic functions and complex analysis.

  • Essential in the theory of doubly periodic functions
  • Frequently appears in advanced mathematics dealing with elliptic curves
  • Used to solve certain nonlinear differential equations
  • Important in mathematical physics, particularly in the study of periodic phenomena

Examples

Using Weierstrass p-function in an elliptic function equation.

(z;ω1,ω2)=1z2+ω(1(zω)21ω2)\weierp(z; \omega_1, \omega_2) = \frac{1}{z^2} + \sum_{\omega} \left(\frac{1}{(z-\omega)^2} - \frac{1}{\omega^2}\right)
\weierp(z; \omega_1, \omega_2) = \frac{1}{z^2} + \sum_{\omega} \left(\frac{1}{(z-\omega)^2} - \frac{1}{\omega^2}\right)

Defining a complex torus using the Weierstrass p-function.

y2=4(xe1)(xe2)(xe3),x=(z)y^2 = 4(x-e_1)(x-e_2)(x-e_3), \quad x = \weierp(z)
y^2 = 4(x-e_1)(x-e_2)(x-e_3), \quad x = \weierp(z)

Expressing the derivative of the Weierstrass p-function.

(z)2=4(z)3g2(z)g3\weierp'(z)^2 = 4\weierp(z)^3 - g_2\weierp(z) - g_3
\weierp'(z)^2 = 4\weierp(z)^3 - g_2\weierp(z) - g_3